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A stability analysis is undertaken to theoretically study the effects of gravity 
modulation and cross-diffusion on the onset of convection in horizontally unbounded 
doubly diffusive fluid layers. We investigate the stability of doubly stratified 
incompressible Boussinesq fluid layers with stress-free and rigid boundaries when the 
stratification is either imposed or induced by Soret separation. The stability criteria are 
established by way of Floquet multipliers of the amplitude equations. The topology of 
neutral curves and stability boundaries exhibits features not found in modulated singly 
diffusive or unmodulated multiply diffusive fluid layers. A striking feature in gravity- 
modulated doubly cross-diffusive layers is the existence of bifurcating neutral curves 
with double minima, one of which corresponds to a quasi-periodic asymptotically 
stable branch and the other to a subharmonic neutral solution. As a consequence, a 
temporally and spatially quasi-periodic bifurcation from the basic state is possible, in 
which case there are two incommensurate critical wavenumbers at two incommensurate 
onset frequencies at the same Rayleigh number. In some instances, the minimum of the 
subharmonic branch is more sensitive to small parameter variations than that of the 
quasi-periodic branch, thus affecting the stability criteria in a way that differs 
substantially from that of unmodulated layers. 

1. Introduction 
During directional solidification of a molten alloy by cooling from below, solutes are 

rejected through a crystallization process leading to the development of temperature 
and concentration gradients (McFadden et al. 1984). The distribution of these 
stratifying agencies may overturn the melt and might adversely affect material 
properties of the castings. It has been argued that the solute redistribution caused by 
buoyancy-driven convection can be substantially reduced by processing materials on 
board orbiting laboratories in spacecraft where the mean gravity field is at least four 
orders of magnitude smaller than its value go on the Earth's surface. 

Owing to several unavoidable sources of residual acceleration experienced by a 
spacecraft (Nelson 1991), the gravity field in an orbiting laboratory is not constant in 
a microgravity environment but is, rather, a randomly fluctuating field in magnitude 
and direction, which is referred to as g-jitter. Typical g-jitter ranges for frequency, 
amplitude, and mean are ( 10-2-103) Hz, (10-6-10-4) go, and (10-5-10-4) go, respectively. 
The literature on the effects of g-jitter in materials processing is quite extensive; for a 
recent comprehensive review the reader is referred to Nelson (1991). In this paper, we 
consider how the onset of convection in horizontal doubly cross-diffusive fluid layer 
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systems is affected by a time-dependent sinusoidal gravity field perpendicular to the 
lateral boundaries of the fluid layer. 

In general, a distribution of stratifying agencies that is convectively stable under 
constant gravity conditions can be destabilized when a time-dependent component of 
the gravity field is introduced. The effect of gravity modulation on a convectively stable 
configuration can significantly influence the stability of a system by increasing or 
decreasing its susceptibility to convection. This added new way of controlling the 
stability of a system is dependent upon the magnitude of the amplitude and frequency 
of the modulation. Furthermore, in a multiply diffusive system, the coupling among the 
various stratifying agencies manifested in cross-diffusion effects can strongly affect the 
convective stability of the layer (McDougall 1983; Platten & Legros 1984; Henry 
1990; Terrones 1993). Suitable combinations of stratification gradients, physical 
properties and modulation parameters may lead to parametric resonance and hence to 
instability of the system. 

Gershuni, Zhukhovitskii & Iurkov (1970) and Gresho & Sani (1970) studied the 
onset of convection in a singly diffusive vertically oscillated fluid layer with rigid 
boundaries. In both of these studies, a single trial function was used to construct the 
stability boundaries. The former authors performed a thorough study and obtained 
more accurate results than the latter; however, they reported incomplete neutral 
curves, lacking the subharmonic branches. In addition to the unbounded fluid layer 
configuration, Wadih & Roux (1988) and Wadith, Zahibo & Roux (1990) studied the 
effect of small-amplitude gravity modulation on convection in long cylindrical cavities. 
A full Navier-Stokes simulation of the BCnard problem in a finite box was done by 
Biringen & Peltier (1990). The results of these authors agreed with the stability 
calculations of Gresho & Sani (1970). Murray, Coriell & McFadden (1991) considered 
the effect of gravity modulation on the onset of convection for the unidirectional 
solidification problem. Wheeler et al. (1991) analysed the same problem in the high- 
frequency modulation limit. More recently, Saunders et al. (1992) studied the onset of 
convection in a gravity-modulated doubly diffusive fluid layer with stress-free 
boundaries and no cross-diffusion. Their efforts concentrated on the construction of 
planar boundaries of convective stability spanned by the relative amplitude and the 
inverse of the modulation frequency. They found that for diffusive-like configurations 
the regions of resonant instability are strongly coupled with multiples of the 
corresponding onset frequencies in the absence of modulation. 

This paper is devoted to the study of the effects of a modulated vertical gravity field 
(not restricted to an analysis for small gravity-modulation amplitude) in doubly 
diffusive layers with and without cross-diffusion and by considering stress-free and 
rigid boundary conditions. Attention is focused on the determination of the linear 
stability criteria for such systems. Using Floquet theory (Yakubovich & Starzhinskii 
1975), the stability criteria are established by a systematic analysis of the topology of 
the neutral curves from which stability boundaries are constructed. Boundaries of 
convective stability for gravity-modulated doubly cross-diffusive systems are presented 
herein for the cases of dynamically free and rigid boundaries. In both cases, two 
physically different forms of layer stratification are considered : (i) imposed independent 
stratification of two components (with and without cross-diffusion), and (ii) a solute 
distribution induced by a fixed temperature gradient (Soret separation). 

Gravity-modulation and cross-diffusion effects in doubly diffusive systems lead to a 
wide variety of topologically complex boundaries of convective stability. These can be 
composed of up to three kinds of asymptotically stable neutral solutions, namely, 
synchronous, subharmonic, and quasi-periodic. A remarkable departure from gravity- 
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modulated singly diffusive fluid layers is the possibility of a quasi-periodic bifurcation 
in time and in space from the motionless basic state. This bifurcation can take place 
in configurations with either stress-free or rigid boundaries. 

2. Linear stability analysis 
Unbounded incompressible horizontal fluid layers of depth d under the influence of 

a periodically varying vertical gravity field in which the fluid density depends on two 
stratifying agencies with different rates of diffusion and cross-diffusion are considered. 
Cross-diffusion is incorporated into the conservation equation by assuming that the 
contribution to the fluxes of the components can be expressed as linear combinations 
of gradients of the stratifying agencies (generalized Fick-Fourier law of diffusion) ; 

2 

Jm = - C pDmkVrk,  m = l,2, 
k=l 

where p is the density of the fluid mixture, D,k is the diffusivity matrix, and r k  is the 
kth stratifying agency of the system. This expression is valid as long as the temperature 
and concentration gradients in the fluid layer are not exceedingly high (De Groot 
1952). 

Within the Boussinesq approximation the continuity, momentum, and conservation 
equations in dimensional form are, respectively, 

where vi are the velocity components, T is the time variable, li are spatial coordinates, 
g is a periodic function of time, p o  is a reference fluid density, and v is the kinematic 
viscosity. 

The density is a linear function of two stratifying agencies 

1 a P  2 

P = p o  1+ c p m ( r m - q m ) ] ,  pm=-(-)  3 j * m = 1 , 2 ,  [ m-1 PO a r m  r j , p  

where qm is the value of the mth stratifying agency at the bottom of the layer, and pm 
is the mth isobaric expansion coefficient. The governing equations admit a motionless 
basic-state solution in which the distributions of the stratifying agencies are linear in 
the vertical coordinate. 

Gershuni et al. (1970) and Gresho & Sani (1970) expressed the gravity-modulation 
amplitude as a function of the frequency and the maximum displacement of a shaker 
table. However, in a microgravity environment the time-dependent gravity fluctuations 
can be described by a typical g-jitter amplitude and frequency rather than a 
displacement. Following Wadih & Roux (1988), we separate the frequency dependence 
a from the gravity-modulation amplitude gi, and write 

g(r)  = go + gi  cos (527). 
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For convenience, we split the modulation amplitude (g; = hg,) into a dimensionless 
factor h and a dimensional number g ,  (not necessarily equal to the mean gravity field 
go). This separation allows a more general non-dimensionalization in which we avoid 
the occurrence of singular parameters for vanishing values of either go or gi .  By setting 
h to zero, we can validate our results with the unmodulated fluid layer problem. In 
addition, we only need to define one Rayleigh number (based on 8,) for each 
component in the fluid layer. 

We define the non-dimensional independent variables, 

xi = &Id, t = Dl17 /d2 ,  

and dependent perturbation variables, 

along with the non-dimensional parameters, 

YZl go g; Prn Drnk , S r = - - ,  d% 02-, f=-, A = -  y =- 
Dll g1 g1’ mk P k  D l l  YZZ 

where Rm is the Rayleigh number of the rnth stratifying agency, Pr is a generalized 
Prandtl number, which in the case of isothermal ternary mixtures becomes a Schmidt 
number, 52 is the dimensionless modulation frequency, f is the scaled mean-to- 
amplitude gravity ratio, h is an amplitude magnification factor, yrnk are the diffusivity- 
expansion coefficient ratios, and Sr is the Soret number or separation ratio. According 
to our convention, a positive Rm means that the rnth component is destabilizing. 
Because of the one-dimensionality of the basic state and the horizontal isotropy of the 
problem, the analysis is restricted to two-dimensional motions. Thus, a perturbation 
stream function $ is introduced, 

ay a p  
aZ ax * 

w = -- u = -  

We obtain the linearized perturbation equations 

i a  - - V 2 Y - V 4 Y =  Cf+hcosQt) Pr at 

a p  
= V2S1 + y l z  VZS, + R, -, gl 

at ax 

to which we append the following boundary conditions at z = te-  l ,& 

where E = 1 corresponds to rigid-rigid boundaries and E = 2 to free-free boundaries. 
Note that in the case of rigid boundaries, the origin of the coordinate system has been 
shifted to a plane midway between the boundaries. 
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The case of stress-free boundaries is mathematically simpler due to the separability 
of the perturbation equations for normal disturbances that satisfy the homogeneous 
boundary conditions (2.4) for e = 2. The perturbation stream function and 
concentrations can be written as 

where k is the dimensionless horizontal wavenumber. Considering the fundamental 
(most unstable) mode of instability, and the following change of variables: 

equations (2.1)-(2.3) are reduced to a system of three ordinary differential equations 
with periodic coefficients (ODEPC) for the perturbation amplitudes : 

pr k2 [ f+ h cos (z)] (B  + C), 
dA 
-=-PrA+(n2+k2)S d8 n2 + k2 

= R 2 A - y 2 1 B - y 2 2 C .  -= R i A - B - y i 2 C ,  - dB dC 
dB di9 

For rigid boundaries we expand the disturbances in terms of a complete set of trial 
functions : 

The presence of the bi-Laplacian of the stream function in (2.1), suggests the choice of 
trial functions that satisfy a fourth-order eigenvalue problem, leading to an 
orthonormal set of trial functions in the vertical direction (Chandrasekhar 1961). 

tanh(iq,)+tan(h,) = 0, n odd 

- coth (iq,) +cot ( 3 ~ ~ )  = 0, n even. 

cash (Tn z> cos (Tn 4 
cosh (+qJ - cos (h,) ’ 
sinh ( T ~  z )  sin (qn z )  
sinh (iq,) sin Qq,) ’ 

(2.8) Yn(z)  = 

Since the highest-order spatial derivatives for perturbations of the stratifying 
agencies are second order, the trigonometric trial functions 

[cos (nnz) n odd 
sin (nxz) n even (2.9) 

will form a complete set since they satisfy homogeneous boundary conditions as well. 
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We substitute into (2.1H2.3) the truncated series expansions (2.5H2.7) together with 
(2.8) and (2.9) and use the Galerkin method. Finally, the amplitude equations are 
obtained as an implicit system of ODEPCs: 

where the inner products 

can be easily represented in closed form. Note that the matrix in the right-hand side of 
(2.10) is a 2n/SZ-periodic matrix-function of time. 

3. Neutral curves and stability boundaries 
The first step in determining boundaries of convective stability is finding 

asymptotically stable neutral solutions of the amplitude equations. According to 
Floquet theory, a normal solution vector #(t) of a 9--periodic (F = 2x/Q) first-order 
linear system of ODEPCs can be written as 

#(t) = eatPr(t) 

where a = a,+ia, are the characteristic exponents and Pr is a 5-periodic vector 
function. Thus, the asymptotic stability of a solution +(t) is determined by the real part 
of the most unstable characteristic exponent a,, #(t) is stable if a,,,,, < 0, and 
neutrally stable if aR,maz = 0. 

In the most general case of gravity-modulated doubly cross-diffusive fluid layers, the 
critical Rayleigh number depends on nine independent parameters. For brevity, we will 
lump these parameters into a vector P: 

P = (R2, 712, Y21, Y22, Pr, h,L 0, k), 
Rl,,,,, = F(P)* 

Depending on the values of P, solutions of the amplitude equations can be damped, 
amplified or neutral in time. As recognized by Saunders et al. (1992), the stability 
criteria are dependent upon a large number of dimensionless groups. Consequently, 
only projections of the global stability boundary over a limited range of the parameter 
vector P can be graphically represented. The task of finding neutral solutions can be 
considerably simplified by fixing eight parameters in P, thus reducing the search from 
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a ten-dimensional space to a plane. By maintaining both stratifying agencies constant, 
Saunders et al. (1992) presented their stability results in the relative amplitude us. 
inverse modulation frequency plane. Instead, we start by constructing a series of 
neutral curves in the (R6, k)-plane. Once the topology of neutral curves and the critical 
Rayleigh numbers are determined, stability boundaries in the (R,, R,)- and (R,, Sr)- 
planes are generated. 

To locate marginally stable points in the (Rl, k)-plane we used wavenumber traverses 
by fixing the wavenumber and varying R, successively. In the case of either rigid or 
impervious (zero mass flux) boundaries, for an Mth order truncation of the 
perturbation variables, a fundamental matrix is obtained at each (k,R,) point by 
integrating a system of 3M amplitude equations (with linearly independent initial 
conditions) 3M times. The monodromy matrix is obtained after the amplitude 
equations have been integrated in time up to one full period of the modulation. 
Computation of the eigenvalues of the monodromy matrix renders a set of Floquet 
multipliers x from which we calculate the characteristic exponents (a = [In x ] / S ) .  We 
obtain marginally stable points on the neural curves by adjusting R, to drive the real 
part of the most unstable characteristic exponent to zero. 

After an extremal Rayleigh number is found an R, horizontal traverse is performed 
to search for different neutral curves. If no other branch is found, the extremal 
Rayleigh number is critical, otherwise another extremum must be computed until a 
critical value is attained. The type of asymptotically stable neutral solution, namely 
synchronous, subharmonic or quasi-periodic, is determined by the value of ul, the 
imaginary part of the characteristic exponent for which aR,maz. = 0. If ar,N = n 0  
(n = 0, 1,2, . . . ) the neutral solution &(t) is synchronous. If ar, = $( 1 + 2n) Q, then 
&,(t) is subharmonic. If aI,N = ~ K Q ,  ( I K I  Zfi n), then &(t) is quasi-periodic because it 
is the product of two functions (eiar9Nt and @) whose frequencies ($KQ and Q) are 
incommensurate. 

Proceeding as above, the topology of neutral curves is determined in the (R,,k)- 
plane. However, in order to construct a stability boundary in the (Rl, x)-plane (where 
x is a dimensionless group in P different from k) a family of (Rl ,  k) curves parametrized 
by x must be generated. In general, for each x there is a set of neutral curves in the (Rl, 
k)-plane that belongs to different solutions of the amplitude equations. The relative 
locations of these curves determines a set of critical Rayleigh numbers which constitute 
the points of the stability boundary in the (R,, x)-plane. In particular, we choose x to 
be R, and Sr. 

It is worth remarking that the even and odd trial functions are not coupled because 
of the even symmetry of the boundary conditions with respect to our coordinate system 
and also the linearity of the amplitude equations. The separation of even and odd 
functions also takes place in the unmodulated singly diffusive case as pointed out by 
Chandrasekhar (1961). Gresho & Sani (1970) realized that in the modulated case, odd 
solutions are not associated with the lowest Rayleigh number and thus can be 
discarded. 

4. Results and discussion 
The results discussed herein show fundamentally different features in the topology 

of neutral curves and stability boundaries that are not found in modulated singly 
diffusive systems or modu la t ed  multiply diffusive systems (Turner 1985 ; Pearlstein, 
Harris & Terrones 1989; Terrones & Pearlstein 1989; Lopez, Romero & Pearlstein 
1990; Terrones 1993). Results in this section are classified into the following groups: 
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FIGURE 1. Effect of modulation frequency on neutral curves for a gravity-modulated singly diffusive 
layer with rigid boundaries. Pr = 7 . l , f =  1, h = 5 .  . - - * ,  Synchronous branch; -, subharmonic 
branch. (a) D = 500, (b) D = 400, (c )  SZ = 375, ( d )  D = 250. 

(i) singly diffusive stratification; (ii) imposed doubly diffusive stratification in which 
both gradients of the stratifying agencies are independent of each other; (iii) imposed 
doubly cross-diffusive stratification; and (iv) induced doubly diffusive stratification in 
non-isothermal layers (Soret separation). 
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FIGURE 2. Critical Rayleigh numbers as a function of the dimensionless modulation frequency Sa for 
rigid boundaries. Pr = 7 . l , f=  1, h = 5.  . . * . . , Synchronous branch; -, subharmonic branch. 

4.1. Singly diffusive stratification 
The modulated single-component layer with impervious boundaries was studied for 
code-validation purposes. Although this case has previously been analysed by several 
authors, Gershuni et al. (1970) reported incomplete neutral curves by overlooking the 
synchronous branches in their Rayleigh number us. wavenumber neutral curves (figure 
5 in their paper). Neutral curves in the (Rl, &plane for four dimensionless modulation 
frequencies decreasing from SZ = 500 to 250 are shown in figure 1 ( e d ) .  The existence 
of subharmonic neutral curves precludes full stabilization because for decreasing 
values of SZ the synchronous extremum increases (stabilizing the layer) while the 
subharmonic extremum decreases, becoming eventually the critical Rayleigh number. 

Figure 2 shows the synchronous and subharmonic critical Rayleigh numbers as a 
function of SZ. For increasing values of 0, the subharmonic branch intersects the 
synchronous branch, at which point the instability mode changes. Note that because 
we used a different non-dimensionalization than Gresho & Sani (1970), their figure 4, 
does not match our figure 2. They fixed SFr which in our nomenclature corresponds to 
h/SZ2. When they increased Q, they automatically increased the amplitude factor h in 
order to keep SFr constant. We fixed h and increased 52, so in Gresho & Sani’s 
language, we decreased their M’r. A point-by-point comparison can be made between 
the figures. For example, we used h = 5, while they set SFr = For these values SZ 
is about 700. We obtained a critical Rayleigh number (that belongs to a synchronous 
neutral curve) of 1955.4 and a critical wavenumber of 2.93, which are in excellent 
agreement with Gresho and Sani’s results (their figure 4 should read R, x instead 
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FIGURE 3. Neutral curve for a doubly diffusive fluid layer with stress-free boundaries under 
constantgravity. Pr = 7, y,, = 0.8, R, = -2700, f = 1, h = 0. . . . . -, Steady branch; ----, 
oscillatory branch. 

of R, x 
also apply to stress-free boundaries. 

Our computations show that all of the qualitative features of these results 

4.2. Imposed doubly di#iusive stratiJication 
In an unmodulated doubly diffusive fluid layer, elements of the coefficient matrix in the 
linearized perturbation equations are constant. Since any constant function is a 
periodic function of arbitrary period, Floquet theory is clearly applicable to the 
unmodulated stability problem. The characteristic exponents a become the growth 
rates of a matrix eigenvalue problem and validation of our code with the unmodulated 
fluid layers (see Appendix) was possible. 

Figure 3 shows a neutral curve for an unmodulated doubly diffusive layer with 
stress-free boundaries generated by setting h = 0. The growth rates, computed 
according to Floquet theory, agreed with those obtained analytically for a constant 
gravity field. This case is representative of the most complex topology of a neutral 
curve in unmodulated doubly diffusive systems, namely an oscillatory branch 
connected by two bifurcation points to a steady neutral curve. The value of yZZ = 0.8 
was specially chosen so that these bifurcation points are located at a value of R, not 
too different from the critical one. 

In figure 4(a, b), for the same thermophysical parameters, gravity modulation is 
introduced and a banana-shaped subharmonic branch bifurcates from a quasi-periodic 
branch. Note that even though the upper branches in figures 3 and 4 may look the 
same, they represent different classes of solutions. The upper (dotted) branch in figure 
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FIGURE 4. Effect of modulation amplitude on neutral curves for a gravity-modulated stress-free 
doubly diffusive layer. Pr = 7, y,, = 0.8, R, = -2700, f = 1, 62 = 10. . * . . . , Synchronous branch ; 
---- , quasi-periodic branch; -, subharmonic branch. (a) h = 0.1, (b) h = 0.5. 

R, - 3000 - 4000 - 5000 - 6000 
R1,QP 708.2 718.2 728.4 738.3 
4. SH 2313.5 92.4 - 198.0 - 337.4 
kQP 2.22 2.22 2.22 2.22 
k S H  6.62 4.05 3.13 2.65 
wQP 3.15, 10.00 3.64, 10.00 4.06, 10.00 4.46, 10.00 

5.00 5.00 5.00 5.00 
TABLE 1 .  Gravity-modulated doubly diffusive stress-free fluid layer for which double minima exist. 

Pr = lo-,, yzl = 3 x low4,,= 1, h = 0.1, Sa = 10. QP, Quasi-periodic; SH, subharmonic 

4 (a) represents periodic disturbances exhibiting a synchronous temporal response, 
whereas the upper branch in figure 3 represents steady disturbances. Increasing the 
amplitude of the modulation h causes the subharmonic branch to grow in all directions. 
This lowers the critical Rayleigh number and therefore makes the layer more unstable. 
This is shown in figure 4(b), where the onset of convection is via subharmonic 
disturbances. 

In the examples discussed so far, the parameters are appropriate for aqueous salt 
solutions. For materials processing involving liquid metals, the Prandtl number is on 
the order of and Schmidt numbers vary between lo1 and 10'. In the results that 
follow, we used typical liquid-metal physical properties of binary tin-based alloys with 
a diffusivity ratio of 3 x and a Schmidt number of 34 (Henry 1990). An interesting 
feature in this range is the existence of neutral curves with double minima (one quasi- 
periodic and the other subharmonic). Table 1 shows the wavenumber and frequency 
values at which these minima occur. Note that for a quasi-periodic branch there 
are two incommensurate onset frequencies wQp the first of which corresponds to 
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FIGURE 5. Neutral curves for a gravity-modulated stress-free doubly diffusive layer in the liquid-metal 
range. Pr = f= 1, h = 0.1, D = 10. ----, Quasi-periodic branch; -, 
subharmonic branch, (a) R, = -3300, (b) R,  = -3387.52. In (b) the two onset frequencies which 
occur at the same R,,,,,, = 711.3 are: o = 3.353 at k,, = 2.23 and o = 5 at k,, = 5.21. 

yz2 = 3 x 

the imaginary part of the characteristic exponent aI and the second one to the 
dimensionless modulation frequency IR. In figure 5 (a) the critical Rayleigh number 
belongs to a quasi-periodic neutral curve that bifurcates into a subharmonic curve at 
k = 5.1544. For a slightly different value of R,, an even more interesting situation is 
shown in figure 5 (b), namely the occurrence of two incommensurate wavenumbers at 
two incommensurate onset frequencies at the same critical Rayleigh number. For this 
special combination of parameters, a temporally and spatially quasi-periodic 
bifurcation from the basic state is possible. In figure 5 (b), the quasi-periodic/ 
subharmonic bifurcation point occurs at k = 4.9223. 

With rigid boundaries, figure 6(a,  b) displays the same topology as figure 5(a, b), 
namely a bifurcating subharmonic branch. It is evident that the value of R, for which 
two different wavenumbers at two different frequencies at the same critical Rayleigh 
number occur lies in between the R, values from figures 6(a) and 6(b). Therefore, the 
temporally and spatially quasi-periodic onset behaviour is also found in the case of 
rigid boundaries at a higher value of R, than that for the freefree case. Another 
consequence of the existence of the subharmonic branch in figures 5 and 6, is a 
discontinuous change in the lengthscale of the convection cells (A,  = 2xd/k,,,,) for 
continuous variations of R,. For a 3% variation of R,, the critical wavenumbers in 
figures 6(a) and 6(b) are 3.37 and 5.83, respectively, implying a reduction of almost half 
in the width of the convection cells. 

In all neutral curves where a subharmonic curve branches out from a quasi-periodic 
curve, the values of the imaginary parts of the critical characteristic exponent aI 
coincide at the bifurcation point. For example, the quasi-periodic branch in figure 5 (a) 
starts with aI = 1.734 at k = 1, increases monotonically, and ends at the bifurcation 
point k = 5.151 with a value of 0 1 ~  = 5 which is exactly half the frequency of the 
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FIGURE 6. Neutral curves for a gravity-modulated doubly diffusive layer in the liquid-metal range 
with rigid boundaries. Pr = lo-,, f =  1, h = 0.1, B = 10. ----, Quasi-periodic 
branch; -, subharmonic branch. (a) R ,  = -3200, (b) R,  = -3300. 

= 3 x 

FIGURE 7. Imaginary part of the most unstable characteristic exponent (a,) as a function of 
wavenumber (k)  for a stress-free doubly diffusive liquid-metal layer. Pr = lo-', yaz = 3 x 
R, = -3300, f =  1, h = 0.1, a = 10. ----, Quasi-periodic branch; --, subharmonic branch; ., quasi-periodic/subharmonic bifurcation point. 

modulation. At this bifurcation point, the subharmonic curve commences (see figure 
7) and the value of a, remains constant along this branch. Numerical computations in 
the liquid-metal range show the location of the quasi-periodic/subharmonic 
bifurcation point(s) being displaced to the left in the (Rl, k)-plane as R, becomes more 

11 FLM 2 5 5  
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negative. The shifting of the bifurcation point(s) to the left is accompanied by a 
lowering of the subharmonic extremum and a narrowing of the subharmonic neutral 
curve, with no appreciable change in the extremum of the quasi-periodic neutral curve. 
This situation makes it possible for the subharmonic extremum to meet the quasi- 
periodic extremum at the same critical Rayleigh number, thereby allowing quasi- 
periodic onset in time and in space to take place. 

The effects of gravity modulation on the stability criteria in the case of stress-free 
boundaries were also compared with constant-gravity configurations, for which 
analytical solutions can be obtained (see Appendix). In the liquid-metal range, the 
imaginary parts of the temporal eigenvalues of the unmodulated problem are almost 
identical to the imaginary parts of the characteristic exponents of the modulated 
problem with the same thermophysical properties. By incorporating into the dispersion 
relation for unmodulated doubly cross-diffusive convection the claim that subharmonic 
disturbances originate when the value of a, along the quasi-periodic branch reaches @, 
we obtain explicitly an expression applicable to modulated fluid layers. Therefore, in 
the limit Pr 6 1, yzz < 1, and y lz  4 1, a necessary condition for the existence of a 
subharmonic branch which bifurcates from a quasi-periodic neutral curve is 

- Pr R2 > $2. (4.1) 
At leading order, the approximate location of the quasi-periodic/subharmonic 
bifurcation point is given by 

where the perturbation parameter is 

6 =  Y2@ + YZJ 
l+Y2, * 

The validity of (4.1) can be easily verified with the parameters for figure 5(a, b). 
Calculations of the quasi-periodic/subharmonic bifurcation point using (4.2) for the 
values in figures 5(a) and 5(b) give wavenumber locations at 5.5536 and 5.2727, 
respectively. These results are 7.2% and 6.6% different from the actual values, 
respectively. 

For the dimensionless parameters used in figure 6(a, b), we estimated typical 
temperature differences (AT) between the upper and lower layers based on liquid-metal 
data given by Webber and Stephens (1968) for a mean gravity of 1 mg and an 
amplitude of 0.1 mg. In these cases, critical thermal Rayleigh numbers are on the order 
of 2000. For layers 2 cm and 3 cm deep, AT = 1250 "C, 370 "C, respectively. The 
corresponding dimensional frequencies are on the order of lo-' Hz, which have been 
observed in microgravity environments (Nelson 199 1). 

4.3. Imposed doubly cross-diflusive stratiJication 
Figure 8 shows the effect of the cross-diffusion coefficient yzl in a stability boundary 
(R,); as a function of (- R,); for typical parameters in the liquid-metal range (fifth 
roots of the Rayleigh numbers are used to highlight salient features in the region near 
the origin). In this case, cross-diffusion has an appreciable influence only on the 
synchronous onset, while the subharmonic and quasi-periodic boundaries are hardly 
affected. The boundary of convective stability resembles that of an unmodulated 
doubly diffusive layer (Turner 1974); however, values of -R, beyond the quasi- 
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FIGURE 8. Stability boundary for a gravity-modulated doubly cross-diffusive layer in the liquid-metal 
range with stress-free boundaries. Pr = f= 1, h = 0.1, 0 = 10. (1) yzl = 
2.25 x 10-4, (2)  yzl = 0, (3) yzl = -2.25 x 10-4. . . + + . , Synchronous branch ; ----, quasi-periodic 
branch; -, subharmonic branch. 

yz2 = 3 x 

periodic/subharmonic bifurcation make the layer very unstable (a feature not possible 
in the unmodulated layer). In the absence of modulation, the shaded area in figure 8 
becomes a stable region (the chain-dotted line is part of the unmodulated stability 
boundary which corresponds to oscillatory onset). The appearance of this shaded 
region indicates that for certain parameter combinations, the effect of modulation is 
destabilizing and could be dangerous if convection has to be avoided. Notice from 
figure 8 that a negative (positive) yZl causes the layer to become more stable (unstable) 
for finger-like configurations (third quadrant) but more unstable (stable) for very weak 
diffusive-like configurations (first quadrant). When yzl is negative, the location of the 
synchronous/quasi-periodic bifurcation point lies in the diffusive-like region whereas 
a sufficiently positive yZ1 causes this point to lie in the second quadrant of the stability 
boundary. 

Disconnected subharmonic neutral curves can be found in some parameter ranges 
in either stress-free or rigid boundary configurations. Figure 9 (a-d) shows the effect 
of including various cross-diffusion coefficients on neutral stability curves for the 
following parameters: Pr = 7, yZZ = 0.8, R, = -2000, Q = 20, f= 1, h = 1. These 
parameters were chosen to illustrate the effect of cross-diffusion and are not data from 
any particular system. Figure 9(b, c) shows a disconnected subharmonic neutral curve 
whose extremum determines the critical Rayleigh number. Figure 9(c, d )  shows the 
effect of changing the sign of the Dufour coefficient (y12) while maintaining all other 
parameters fixed. A positive Dufour coefficient makes the subharmonic disconnected 
neutral curve disappear, causing the layer to become more stable. Note that the most 
stable configuration of figure 9 corresponds to figure 9 ( d )  which has a positive Dufour 
coefficient and a negative Soret coefficient. 

1 1 - 2  
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FIGURE 9. Sequence of neutral curves showing the effect of various cross-diffusion coefficients on a 
gravity-modulated stress-free doubly diffusive layer. Pr = 7, yzz = 0.8, R, = -2000, f= I ,  h = 1 ,  
Q = 20. ----, Quasi-periodic branch; -, subharmonic branch. (a) y12 = 0, yzl = 0,  (b )  y12 = 
0, yzl = - 1.6 x lo-', (c) yl, = - lo-', yzl = - 1.6 x lo-,, ( d )  yl, = lo-', yZl = - 1.6 x lo-'. 

Figure 10 shows the analogue of the rigid boundaries from figure 9(b) with the same 
properties except that R, = -3200. The extrema occur at a higher value than that of 
figure 9 (b) since rigid boundaries stabilize the layer. 
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FIGURE 10. Neutral curve for a gravity-modulated doubly cross-diffusive layer with rigid boundaries. 
P r = 7 ,  yzz=0.8, R2=-3200,f=1, h = l ,  Q=20, ylz=O, y , , = - l . 6 ~ 1 0 - ~ .  ---- , Quasi- 
periodic branch; -, subharmonic branch. 

4.4. Induced doubly difusive stratijication 
As pointed out by Praizey (1986), the Soret effect in molten alloys may cause the solute 
to migrate to either the hot or cold boundary, depending on the system and the solute 
concentration. Thus, in the liquid-metal range, Soret numbers can be either positive 
or negative. In this subsection, we construct a stability boundary in the range 
-1 < Sr < 1. 

Figure 11 (a) shows a typical neutral curve when in a modulated stress-free layer a 
solute gradient is induced by Soret separation. In figure 1 l(a) the negative Soret number 
induces a diffusive-like stratification which causes the appearance of a finite range of 
linearly stable Rayleigh numbers. This stable range is bounded above by a quasi- 
periodic branch and below by a synchronous branch. The seemingly straight lower 
boundary of the stability range has a maximum negative Rayleigh number near 
k = 7c/2/2, however, its radius of curvature is much greater than that of the upper 
quasi-periodic boundary. 

For values of the Soret number greater than a certain critical (negative) value, the 
lower synchronous curve disappears yielding the usual semi-infinite range for R,. A 
similar topology is recovered for rigid boundaries as shown in figure 11 (b). However, 
the finite range of stability almost triples the stable range found in the case of stress- 
free boundaries for the same Soret number. Figure 12 shows the stability boundary 
(R,)f as a function of Sr. This curve is reminiscent of that reported by Hurle & Jakeman 
(1971) and Platten & Legros (1984) for an unmodulated layer. A distinguishing feature 
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FIGURE 1 1. Neutral curve for a gravity-modulated Soret-induced solute distribution. Sr = - 0.5, 
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periodic branch. (a) Stress-free boundaries, (b) rigid boundaries. 

20 

15 

10 
I 

-Ri 

5 

0 

-5 

Stable 

I1 
....................................... 11. ........ .... 

Unstable 

-1 .o -0.5 
Sr 

Unstable 

.... ............................................... 
I 

IV 

0.5 1 .o 

FIGURE 12. Stability boundary for a gravity-modulated Soret-induced solute distribution with rigid 
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is the convex quasi-periodic branch in the second quadrant of the stability boundary 
in contradistinction to the concave oscillatory branch found in the unmodulated case. 
For this particular parameter vector no subharmonic branches were found. An 
extended search of neutral curves for higher wavenumber values, showed the existence 
of subharmonic branches whose extrema did not contribute to the stability criteria. 

5. Conclusions 
By varying the stratification and boundary conditions and systematically analysing 

the relative localization of the various neutral curves, we determined the stability 
criteria for several fluid layer configurations. Gravity modulation in doubly-cross 
diffusive systems modifies substantially the onset of convective instability of fluid layers 
when compared to their unmodulated counterparts. The topology of neutral curves is 
more complex than that encountered in constant-gravity multiply diffusive layers. 
This is due not only to the large number of parameters required to establish the 
stability criteria, but also to the existence of quasi-periodic marginally stable curves (in 
addition to synchronous and subharmonic). 

A striking feature is a set of parameters for which a subharmonic branch bifurcates 
from a quasi-periodic neutral curve. For stress-free layers, a necessary condition for the 
existence of a subharmonic/quasi-periodic bifurcation and an expression for the 
wavenumber location at which it occurs were derived and verified within the liquid- 
metal range. In this parameter range, neutral curves with double minima were found. 
The implications of such an event occurring in both stress-free and rigid boundaries 
are: (i) an abrupt jump in the lengthscale of the convection cells for continuous 
variations of R, ; (ii) for increasingly stable solute stratification in diffusive-like 
configurations, there is a critical solutal Rayleigh number beyond which the layer 
becomes increasingly unstable via subharmonic disturbances; and (iii) the existence of 
two incommensurate onset frequencies at two incommensurate wavenumber for the 
same critical Rayleigh number, thus leading to a temporally and spatially quasi- 
periodic bifurcation from the basic state. Additional features not possible in the 
absence of modulation are : (i) neutral curves exhibiting multiple bifurcation points 
connecting three different classes of asymptotically stable solutions ; (ii) connected and 
closed disconnected subharmonic neutral curves. This latter feature indicates a strong 
sensitivity of the extrema locations (in the (Rl,  k)-plane) to small variations in the cross- 
diffusion coefficients. 
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Appendix 
The equations that follow are valid for stress-free doubly diffusive systems under a 

constant gravity field. First, we consider a doubly cross-diffusive layer in which the 
gradients of two stratifying agencies are independently imposed. Second, we consider 
Soret-driven solute stratification by a temperature gradient. 
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A. 1. Imposed gradients 
There is only one critical wavenumber for steady and oscillatory onset: 

k, = 7~142. 
The Rayleigh number above which the layer is unstable with respect to steady onset 

and with respect to oscillatory onset is 

[(l +YZ2)(  1+Pr+y22+ Y 2 2  - pr YZl Y 1 2 )  (n2 ;!I3 
1 

R1*o = 1 + P r + y 2 ,  

where w is the onset frequency. 

A.2. Soret convection 
The only critical wavenumber is the same as in GA.1. We assume that R, (based on the 
temperature gradient) is imposed and R, (based on the solute gradient) is induced 
according to R, = SrR,. 
Note that our definitions for the Rayleigh numbers are related to more conventional 
definitions through 

For steady onset we have 
RThermal = RSolutal = - '2/~22.  

R1,S = 
1 (n2 + k2)3 

1+Sr(1+1/y2,) k2 ' 
and for oscillatory onset 

(1 +YZZ)(l + P W  +Y22/P%z2+k2)3 
R1,o = l + P r ( l + S r )  k2 * 

The dispersion relation is 

- (1 +Pr-yZ2Sr)w2 - 
(7c2 + k2)2 
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